Activator protein-1 mediates shear stress-induced prostaglandin d synthase gene expression in vascular endothelial cells.

نویسندگان

  • Megumi Miyagi
  • Yoshikazu Miwa
  • Fumi Takahashi-Yanaga
  • Sachio Morimoto
  • Toshiyuki Sasaguri
چکیده

OBJECTIVE We attempted to determine the molecular mechanism of fluid shear stress-induced lipocalin-type prostaglandin D synthase (l-PGDS) expression in vascular endothelial cells. METHODS AND RESULTS We examined the promoter region of the l-PGDS gene by loading laminar shear stress (20 dyne/cm2), using a parallel-plate flow chamber, on endothelial cells transfected with luciferase reporter vectors containing the 5'-flanking regions of the human l-PGDS gene. A deletion mutant analysis revealed that a shear stress-responsive element resided in the region between -2607 and -2523 bp. A mutation introduced into the putative binding site for activator protein-1 (AP-1) within this region eliminated the response to shear stress. In an electrophoretic mobility shift assay, shear stress stimulated nuclear protein binding to the AP-1 binding site, which was supershifted by antibodies to c-Fos and c-Jun. Shear stress elevated the c-Jun phosphorylation level in a time-dependent manner, similar to that of l-PGDS gene expression. SP600125, a c-Jun N-terminal kinase inhibitor, decreased the c-Jun phosphorylation, DNA binding of AP-1, and l-PGDS expression induced by shear stress. Additionally, an mRNA chase experiment using actinomycin D demonstrated that shear stress did not stabilize l-PGDS mRNA. CONCLUSIONS Shear stress induces l-PGDS expression by transcriptional activation through the AP-1 binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase.

Fluid shear stress generated by blood flowing over the endothelium is a major determinant of arterial tone, vascular remodeling, and atherogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an essential role in regulation of vascular function and structure by blood flow, but the molecular mechanisms that transduce mechanical force to eNOS activation are not well underst...

متن کامل

Fluid shear stress induces lipocalin-type prostaglandin D(2) synthase expression in vascular endothelial cells.

Ligands for peroxisome proliferator-activated receptor gamma, such as the thiazolidinedione class of antidiabetic drugs and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), modulate various processes in atherogenesis. In search of cells that generate prostaglandin D(2) (PGD(2)), the metabolic precursor of 15d-PGJ(2), we identified PGD(2) from culture medium of endothelial cells. To study ...

متن کامل

Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms.

OBJECTIVE The goal of this study was to examine the effect of chronic heterogeneous shear stress, applied using an orbital shaker, on endothelial cell morphology and the expression of cyclooxygenases 1 and 2. METHODS AND RESULTS Porcine aortic endothelial cells were plated on fibronectin-coated Transwell plates. Cells were cultured for up to 7 days either under static conditions or on an orbi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2005